
A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

A look inside the Windows Kernel

Bruno Pujos

LSE

July 18, 2013

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Plan

1 Introduction

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Introduction

What this talk is about?

• Security of the Windows Kernel
• Presentation of some exploits
• What changed in the security of the kernel, since

Windows NT 5.1 (Windows XP)

Motivation for attacking the kernel

• Sandbox bypassing
• Full access to everything
• The fun

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Plan

1 Introduction

2 Basics of Windows Kernel

3 CVE-2011-1237

4 Evolution from XP to 8

5 CVE-2013-3660

6 Conclusion

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Plan

2 Basics of Windows Kernel

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Basics of Windows Kernel

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

HAL

• HAL : The hardware abstraction layer (hal.dll)
• ”a layer of software that deals directly with your

computer hardware.” (msdn)
• Layer for suporting different hardware with the same

software
• HalDispatchTable : holds the addresses of a few

HAL routines

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Win32k.sys

• Kernel mode driver
• Introduce in NT 4.0 for performance reason
• Two parts :

• The Graphics Device Interface (GDI)
• The Window Manager

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

User objects

• User entities (Windows, menu, keyboard layout. . .)
• Managed by the Window Manager
• Represented by a handle
• Handle table keeps track of each user object

• The address of the object
• The type of the object
• A flag
• The owner and a wUniq value

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

User objects

• User entities (Windows, menu, keyboard layout. . .)
• Managed by the Window Manager
• Represented by a handle
• Handle table keeps track of each user object

• The address of the object
• The type of the object
• A flag
• The owner and a wUniq value

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

User objects

• User entities (Windows, menu, keyboard layout. . .)
• Managed by the Window Manager
• Represented by a handle
• Handle table keeps track of each user object

• The address of the object
• The type of the object
• A flag
• The owner and a wUniq value

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

User-Mode Callback

• A way to communicate between kernel and user:
• access to some structures in user mode
• used to support hooking
• . . .

• CBT-Hook: receive notifications from windows
• WindowProc: callback function wich processes the

messages sent to a window

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

User-Mode Callback

• A way to communicate between kernel and user:
• access to some structures in user mode
• used to support hooking
• . . .

• CBT-Hook: receive notifications from windows
• WindowProc: callback function wich processes the

messages sent to a window

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Plan

3 CVE-2011-1237

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Vulnerability

• Vulnerability discovered by Tarjei Mandt
(@kernelpool), based on his paper Kernel Attacks
through User-Mode Callbacks

• Use After Free of a window object (User Object)
• During the creation of a new window, you can give a

parent in a CBT-Hook
• Using another hook during the creation, you can

destroy this window
• We have a way to allocate a buffer with our content

and the size we want with SetWindowTextW. We will
use it to put what we want at the position of the free
window

• The parent is used at the end of LinkWindow, and it
has been freed

• We can map the Null page and put our shellcode in
it, in userland. Our goal is to call it

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Vulnerability

• Vulnerability discovered by Tarjei Mandt
(@kernelpool), based on his paper Kernel Attacks
through User-Mode Callbacks

• Use After Free of a window object (User Object)
• During the creation of a new window, you can give a

parent in a CBT-Hook
• Using another hook during the creation, you can

destroy this window
• We have a way to allocate a buffer with our content

and the size we want with SetWindowTextW. We will
use it to put what we want at the position of the free
window

• The parent is used at the end of LinkWindow, and it
has been freed

• We can map the Null page and put our shellcode in
it, in userland. Our goal is to call it

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Vulnerability

• Vulnerability discovered by Tarjei Mandt
(@kernelpool), based on his paper Kernel Attacks
through User-Mode Callbacks

• Use After Free of a window object (User Object)
• During the creation of a new window, you can give a

parent in a CBT-Hook
• Using another hook during the creation, you can

destroy this window
• We have a way to allocate a buffer with our content

and the size we want with SetWindowTextW. We will
use it to put what we want at the position of the free
window

• The parent is used at the end of LinkWindow, and it
has been freed

• We can map the Null page and put our shellcode in
it, in userland. Our goal is to call it

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Vulnerability

• Vulnerability discovered by Tarjei Mandt
(@kernelpool), based on his paper Kernel Attacks
through User-Mode Callbacks

• Use After Free of a window object (User Object)
• During the creation of a new window, you can give a

parent in a CBT-Hook
• Using another hook during the creation, you can

destroy this window
• We have a way to allocate a buffer with our content

and the size we want with SetWindowTextW. We will
use it to put what we want at the position of the free
window

• The parent is used at the end of LinkWindow, and it
has been freed

• We can map the Null page and put our shellcode in
it, in userland. Our goal is to call it

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Vulnerability

• Vulnerability discovered by Tarjei Mandt
(@kernelpool), based on his paper Kernel Attacks
through User-Mode Callbacks

• Use After Free of a window object (User Object)
• During the creation of a new window, you can give a

parent in a CBT-Hook
• Using another hook during the creation, you can

destroy this window
• We have a way to allocate a buffer with our content

and the size we want with SetWindowTextW. We will
use it to put what we want at the position of the free
window

• The parent is used at the end of LinkWindow, and it
has been freed

• We can map the Null page and put our shellcode in
it, in userland. Our goal is to call it

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Vulnerability

• Vulnerability discovered by Tarjei Mandt
(@kernelpool), based on his paper Kernel Attacks
through User-Mode Callbacks

• Use After Free of a window object (User Object)
• During the creation of a new window, you can give a

parent in a CBT-Hook
• Using another hook during the creation, you can

destroy this window
• We have a way to allocate a buffer with our content

and the size we want with SetWindowTextW. We will
use it to put what we want at the position of the free
window

• The parent is used at the end of LinkWindow, and it
has been freed

• We can map the Null page and put our shellcode in
it, in userland. Our goal is to call it

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Vulnerability

• Vulnerability discovered by Tarjei Mandt
(@kernelpool), based on his paper Kernel Attacks
through User-Mode Callbacks

• Use After Free of a window object (User Object)
• During the creation of a new window, you can give a

parent in a CBT-Hook
• Using another hook during the creation, you can

destroy this window
• We have a way to allocate a buffer with our content

and the size we want with SetWindowTextW. We will
use it to put what we want at the position of the free
window

• The parent is used at the end of LinkWindow, and it
has been freed

• We can map the Null page and put our shellcode in
it, in userland. Our goal is to call it

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Link Window

• Basically, it just adds an element in a double chained
list of windows

• clockObj: part of each User Object, reference
counter

• Since we control one of the objects we can
decrement an arbitrary a word by one

• If the clockObj is null, it calls the function
HMDestroyUnlockedObject

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Link Window

• Basically, it just adds an element in a double chained
list of windows

• clockObj: part of each User Object, reference
counter

• Since we control one of the objects we can
decrement an arbitrary a word by one

• If the clockObj is null, it calls the function
HMDestroyUnlockedObject

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Link Window

• Basically, it just adds an element in a double chained
list of windows

• clockObj: part of each User Object, reference
counter

• Since we control one of the objects we can
decrement an arbitrary a word by one

• If the clockObj is null, it calls the function
HMDestroyUnlockedObject

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Link Window

• Basically, it just adds an element in a double chained
list of windows

• clockObj: part of each User Object, reference
counter

• Since we control one of the objects we can
decrement an arbitrary a word by one

• If the clockObj is null, it calls the function
HMDestroyUnlockedObject

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Link Window

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Link Window

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Link Window

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Link Window

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Exploitation - Decrement by one

• Create two windows (A & B)
• Activate the hook
• Create a third window (E)

• HCBT_CREATEWND: link with the window A
• WM_NCCREATE: destroy A (DestroyWindow),

realloc with a fake object (SetWindowTextW on B)
• LinkWindow: decrement by one where we want

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Exploitation - Decrement by one

• Create two windows (A & B)
• Activate the hook
• Create a third window (E)

• HCBT_CREATEWND: link with the window A
• WM_NCCREATE: destroy A (DestroyWindow),

realloc with a fake object (SetWindowTextW on B)
• LinkWindow: decrement by one where we want

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Exploitation - Decrement by one

• Create two windows (A & B)
• Activate the hook
• Create a third window (E)

• HCBT_CREATEWND: link with the window A
• WM_NCCREATE: destroy A (DestroyWindow),

realloc with a fake object (SetWindowTextW on B)
• LinkWindow: decrement by one where we want

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Exploitation - Decrement by one

• Create two windows (A & B)
• Activate the hook
• Create a third window (E)

• HCBT_CREATEWND: link with the window A
• WM_NCCREATE: destroy A (DestroyWindow),

realloc with a fake object (SetWindowTextW on B)
• LinkWindow: decrement by one where we want

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Exploitation - Decrement by one

• Create two windows (A & B)
• Activate the hook
• Create a third window (E)

• HCBT_CREATEWND: link with the window A
• WM_NCCREATE: destroy A (DestroyWindow),

realloc with a fake object (SetWindowTextW on B)
• LinkWindow: decrement by one where we want

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Exploitation - Decrement by one

• Create two windows (A & B)
• Activate the hook
• Create a third window (E)

• HCBT_CREATEWND: link with the window A
• WM_NCCREATE: destroy A (DestroyWindow),

realloc with a fake object (SetWindowTextW on B)
• LinkWindow: decrement by one where we want

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

HMDestroyUnlockedObject

HMDestroyUnlockedObject

• HMDestroyUnlockedObject : takes the handle from
the user object given as argument

• check this condition: (flag & 1) && !(flag & 2)
• if it is true, calls the destroying function for the object

depending on his type
• If the type is 0 (already free): calls the null page

Standard

• the type for a window is 1
• in a standard moment the flag is 00

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

HMDestroyUnlockedObject

HMDestroyUnlockedObject

• HMDestroyUnlockedObject : takes the handle from
the user object given as argument

• check this condition: (flag & 1) && !(flag & 2)
• if it is true, calls the destroying function for the object

depending on his type
• If the type is 0 (already free): calls the null page

Standard

• the type for a window is 1
• in a standard moment the flag is 00

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

HMDestroyUnlockedObject

HMDestroyUnlockedObject

• HMDestroyUnlockedObject : takes the handle from
the user object given as argument

• check this condition: (flag & 1) && !(flag & 2)
• if it is true, calls the destroying function for the object

depending on his type
• If the type is 0 (already free): calls the null page

Standard

• the type for a window is 1
• in a standard moment the flag is 00

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

HMDestroyUnlockedObject

HMDestroyUnlockedObject

• HMDestroyUnlockedObject : takes the handle from
the user object given as argument

• check this condition: (flag & 1) && !(flag & 2)
• if it is true, calls the destroying function for the object

depending on his type
• If the type is 0 (already free): calls the null page

Standard

• the type for a window is 1
• in a standard moment the flag is 00

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

HMDestroyUnlockedObject

HMDestroyUnlockedObject

• HMDestroyUnlockedObject : takes the handle from
the user object given as argument

• check this condition: (flag & 1) && !(flag & 2)
• if it is true, calls the destroying function for the object

depending on his type
• If the type is 0 (already free): calls the null page

Standard

• the type for a window is 1
• in a standard moment the flag is 00

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

HMDestroyUnlockedObject

HMDestroyUnlockedObject

• HMDestroyUnlockedObject : takes the handle from
the user object given as argument

• check this condition: (flag & 1) && !(flag & 2)
• if it is true, calls the destroying function for the object

depending on his type
• If the type is 0 (already free): calls the null page

Standard

• the type for a window is 1
• in a standard moment the flag is 00

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Exploitation - Calling the null page

• We create a first window (U)
• We decremant the flag of the handle of U by 3 using

the use-after-free (0xFD)
• We decrement the type of the handle of U by 1 (0)
• We trigger once again the use-after-free

• In LinkWindow we put a clockObj to 1, and the
handler of the window U

• when clockObj is decremented, call to
HMDestroyUnlockedObject is done, that passes the
test and calls the null page

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Exploitation - Calling the null page

• We create a first window (U)
• We decremant the flag of the handle of U by 3 using

the use-after-free (0xFD)
• We decrement the type of the handle of U by 1 (0)
• We trigger once again the use-after-free

• In LinkWindow we put a clockObj to 1, and the
handler of the window U

• when clockObj is decremented, call to
HMDestroyUnlockedObject is done, that passes the
test and calls the null page

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Exploitation - Calling the null page

• We create a first window (U)
• We decremant the flag of the handle of U by 3 using

the use-after-free (0xFD)
• We decrement the type of the handle of U by 1 (0)
• We trigger once again the use-after-free

• In LinkWindow we put a clockObj to 1, and the
handler of the window U

• when clockObj is decremented, call to
HMDestroyUnlockedObject is done, that passes the
test and calls the null page

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Exploitation - Calling the null page

• We create a first window (U)
• We decremant the flag of the handle of U by 3 using

the use-after-free (0xFD)
• We decrement the type of the handle of U by 1 (0)
• We trigger once again the use-after-free

• In LinkWindow we put a clockObj to 1, and the
handler of the window U

• when clockObj is decremented, call to
HMDestroyUnlockedObject is done, that passes the
test and calls the null page

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Exploitation - Calling the null page

• We create a first window (U)
• We decremant the flag of the handle of U by 3 using

the use-after-free (0xFD)
• We decrement the type of the handle of U by 1 (0)
• We trigger once again the use-after-free

• In LinkWindow we put a clockObj to 1, and the
handler of the window U

• when clockObj is decremented, call to
HMDestroyUnlockedObject is done, that passes the
test and calls the null page

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Exploitation - Calling the null page

• We create a first window (U)
• We decremant the flag of the handle of U by 3 using

the use-after-free (0xFD)
• We decrement the type of the handle of U by 1 (0)
• We trigger once again the use-after-free

• In LinkWindow we put a clockObj to 1, and the
handler of the window U

• when clockObj is decremented, call to
HMDestroyUnlockedObject is done, that passes the
test and calls the null page

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Plan

4 Evolution from XP to 8

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

From XP to 8

• Kernel ASLR
• Kernel Address = User Address - Local module base

+ Kernel module base

• Enhanced /GS
• Guard pages
• DEP improvements
• NULL dereference protection
• Kernel pool integrity checks
• SMEP/PXN

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

From XP to 8

• Kernel ASLR
• Kernel Address = User Address - Local module base

+ Kernel module base

• Enhanced /GS
• Guard pages
• DEP improvements
• NULL dereference protection
• Kernel pool integrity checks
• SMEP/PXN

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

From XP to 8

• Kernel ASLR
• Kernel Address = User Address - Local module base

+ Kernel module base

• Enhanced /GS
• Guard pages
• DEP improvements
• NULL dereference protection
• Kernel pool integrity checks
• SMEP/PXN

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

From XP to 8

• Kernel ASLR
• Kernel Address = User Address - Local module base

+ Kernel module base

• Enhanced /GS
• Guard pages
• DEP improvements
• NULL dereference protection
• Kernel pool integrity checks
• SMEP/PXN

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

From XP to 8

• Kernel ASLR
• Kernel Address = User Address - Local module base

+ Kernel module base

• Enhanced /GS
• Guard pages
• DEP improvements
• NULL dereference protection
• Kernel pool integrity checks
• SMEP/PXN

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

From XP to 8

• Kernel ASLR
• Kernel Address = User Address - Local module base

+ Kernel module base

• Enhanced /GS
• Guard pages
• DEP improvements
• NULL dereference protection
• Kernel pool integrity checks
• SMEP/PXN

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

From XP to 8

• Kernel ASLR
• Kernel Address = User Address - Local module base

+ Kernel module base

• Enhanced /GS
• Guard pages
• DEP improvements
• NULL dereference protection
• Kernel pool integrity checks
• SMEP/PXN

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

SMEP/PXN

• Supervisor Mode Execution Protection / Privileged
Execute Never

• Depends on the processor
• Prevents a kernel thread to execute code in userland
• SMEP is enabled or disabled via CR4 control register
• Possible to bypass

• ROP
• Store the shellcode into kernel space

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

SMEP/PXN

• Supervisor Mode Execution Protection / Privileged
Execute Never

• Depends on the processor
• Prevents a kernel thread to execute code in userland
• SMEP is enabled or disabled via CR4 control register
• Possible to bypass

• ROP
• Store the shellcode into kernel space

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

SMEP/PXN

• Supervisor Mode Execution Protection / Privileged
Execute Never

• Depends on the processor
• Prevents a kernel thread to execute code in userland
• SMEP is enabled or disabled via CR4 control register
• Possible to bypass

• ROP
• Store the shellcode into kernel space

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

SMEP/PXN

• Supervisor Mode Execution Protection / Privileged
Execute Never

• Depends on the processor
• Prevents a kernel thread to execute code in userland
• SMEP is enabled or disabled via CR4 control register
• Possible to bypass

• ROP
• Store the shellcode into kernel space

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

SMEP/PXN

• Supervisor Mode Execution Protection / Privileged
Execute Never

• Depends on the processor
• Prevents a kernel thread to execute code in userland
• SMEP is enabled or disabled via CR4 control register
• Possible to bypass

• ROP
• Store the shellcode into kernel space

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Plan

5 CVE-2013-3660

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Vulnerability

• Vulnerability discovered by Tavis Ormandy (@taviso)
• Exploit by Tavis Ormandy and progmboy
• In win32k!EPATHOBJ::pprFlattenRec
• Uninitialized pointer for the next in a double linked list

(part of a Path object in the GDI in win32k)
• To-userspace dereferences vulnerability
• We want to trigger a write-what-where vulnerability

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Vulnerability

• Vulnerability discovered by Tavis Ormandy (@taviso)
• Exploit by Tavis Ormandy and progmboy
• In win32k!EPATHOBJ::pprFlattenRec
• Uninitialized pointer for the next in a double linked list

(part of a Path object in the GDI in win32k)
• To-userspace dereferences vulnerability
• We want to trigger a write-what-where vulnerability

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Vulnerability

• Vulnerability discovered by Tavis Ormandy (@taviso)
• Exploit by Tavis Ormandy and progmboy
• In win32k!EPATHOBJ::pprFlattenRec
• Uninitialized pointer for the next in a double linked list

(part of a Path object in the GDI in win32k)
• To-userspace dereferences vulnerability
• We want to trigger a write-what-where vulnerability

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Vulnerability

• Vulnerability discovered by Tavis Ormandy (@taviso)
• Exploit by Tavis Ormandy and progmboy
• In win32k!EPATHOBJ::pprFlattenRec
• Uninitialized pointer for the next in a double linked list

(part of a Path object in the GDI in win32k)
• To-userspace dereferences vulnerability
• We want to trigger a write-what-where vulnerability

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Vulnerability

• Vulnerability discovered by Tavis Ormandy (@taviso)
• Exploit by Tavis Ormandy and progmboy
• In win32k!EPATHOBJ::pprFlattenRec
• Uninitialized pointer for the next in a double linked list

(part of a Path object in the GDI in win32k)
• To-userspace dereferences vulnerability
• We want to trigger a write-what-where vulnerability

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Pathrec struct

struct _PATHRECORD {
struct _PATHRECORD ∗ next ;
struct _PATHRECORD ∗ prev ;
ULONG f l a g s ;
ULONG count ;
POINTFIX po in t s [x] ;

}

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Go to userspace

• We need to make a specific AllocObject fail to trigger
the exploitable condition: we need memory pressure.

• Allocation of the struct of a PATHREC is done of two
possible ways
• The PATHALLOC system use HeavyAllocPool for

allocating object but have is own implementation of
the free list

• After allocating from HeavyAllocPool, it memsets to 0
• But in the case of taking an element of the freelist it’s

not set to 0

• If we can spam the freelist with what we want we
have big chances to have the next pointer where we
want (in userspace)

• We can do that easily by flattening path with a lot of
points we control

• We put a structure we created in userspace and we
force the kernel to consider that is the next of his list

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Go to userspace

• We need to make a specific AllocObject fail to trigger
the exploitable condition: we need memory pressure.

• Allocation of the struct of a PATHREC is done of two
possible ways
• The PATHALLOC system use HeavyAllocPool for

allocating object but have is own implementation of
the free list

• After allocating from HeavyAllocPool, it memsets to 0
• But in the case of taking an element of the freelist it’s

not set to 0

• If we can spam the freelist with what we want we
have big chances to have the next pointer where we
want (in userspace)

• We can do that easily by flattening path with a lot of
points we control

• We put a structure we created in userspace and we
force the kernel to consider that is the next of his list

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Go to userspace

• We need to make a specific AllocObject fail to trigger
the exploitable condition: we need memory pressure.

• Allocation of the struct of a PATHREC is done of two
possible ways
• The PATHALLOC system use HeavyAllocPool for

allocating object but have is own implementation of
the free list

• After allocating from HeavyAllocPool, it memsets to 0
• But in the case of taking an element of the freelist it’s

not set to 0

• If we can spam the freelist with what we want we
have big chances to have the next pointer where we
want (in userspace)

• We can do that easily by flattening path with a lot of
points we control

• We put a structure we created in userspace and we
force the kernel to consider that is the next of his list

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Go to userspace

• We need to make a specific AllocObject fail to trigger
the exploitable condition: we need memory pressure.

• Allocation of the struct of a PATHREC is done of two
possible ways
• The PATHALLOC system use HeavyAllocPool for

allocating object but have is own implementation of
the free list

• After allocating from HeavyAllocPool, it memsets to 0
• But in the case of taking an element of the freelist it’s

not set to 0

• If we can spam the freelist with what we want we
have big chances to have the next pointer where we
want (in userspace)

• We can do that easily by flattening path with a lot of
points we control

• We put a structure we created in userspace and we
force the kernel to consider that is the next of his list

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Go to userspace

• We need to make a specific AllocObject fail to trigger
the exploitable condition: we need memory pressure.

• Allocation of the struct of a PATHREC is done of two
possible ways
• The PATHALLOC system use HeavyAllocPool for

allocating object but have is own implementation of
the free list

• After allocating from HeavyAllocPool, it memsets to 0
• But in the case of taking an element of the freelist it’s

not set to 0

• If we can spam the freelist with what we want we
have big chances to have the next pointer where we
want (in userspace)

• We can do that easily by flattening path with a lot of
points we control

• We put a structure we created in userspace and we
force the kernel to consider that is the next of his list

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Go to userspace

• We need to make a specific AllocObject fail to trigger
the exploitable condition: we need memory pressure.

• Allocation of the struct of a PATHREC is done of two
possible ways
• The PATHALLOC system use HeavyAllocPool for

allocating object but have is own implementation of
the free list

• After allocating from HeavyAllocPool, it memsets to 0
• But in the case of taking an element of the freelist it’s

not set to 0

• If we can spam the freelist with what we want we
have big chances to have the next pointer where we
want (in userspace)

• We can do that easily by flattening path with a lot of
points we control

• We put a structure we created in userspace and we
force the kernel to consider that is the next of his list

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Go to userspace

• We need to make a specific AllocObject fail to trigger
the exploitable condition: we need memory pressure.

• Allocation of the struct of a PATHREC is done of two
possible ways
• The PATHALLOC system use HeavyAllocPool for

allocating object but have is own implementation of
the free list

• After allocating from HeavyAllocPool, it memsets to 0
• But in the case of taking an element of the freelist it’s

not set to 0

• If we can spam the freelist with what we want we
have big chances to have the next pointer where we
want (in userspace)

• We can do that easily by flattening path with a lot of
points we control

• We put a structure we created in userspace and we
force the kernel to consider that is the next of his list

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Go to userspace

• We need to make a specific AllocObject fail to trigger
the exploitable condition: we need memory pressure.

• Allocation of the struct of a PATHREC is done of two
possible ways
• The PATHALLOC system use HeavyAllocPool for

allocating object but have is own implementation of
the free list

• After allocating from HeavyAllocPool, it memsets to 0
• But in the case of taking an element of the freelist it’s

not set to 0

• If we can spam the freelist with what we want we
have big chances to have the next pointer where we
want (in userspace)

• We can do that easily by flattening path with a lot of
points we control

• We put a structure we created in userspace and we
force the kernel to consider that is the next of his list

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

bFlatten and pprFlatten

• EPATHOBJ::bFlatten just goes through a list and
calls pprFlattenRec if a flag is set on the element

• EPATHOBJ::pprFlattenRec
• allocates a new pathrec
• initialises the new (but not the next at this point)
• sets the next of previous of the new to himself

new−>previous−>next = new ;

• ...

• if we control the struct we can write the position of
the new struct created by pprFlattenRec

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

bFlatten and pprFlatten

• EPATHOBJ::bFlatten just goes through a list and
calls pprFlattenRec if a flag is set on the element

• EPATHOBJ::pprFlattenRec
• allocates a new pathrec
• initialises the new (but not the next at this point)
• sets the next of previous of the new to himself

new−>previous−>next = new ;

• ...

• if we control the struct we can write the position of
the new struct created by pprFlattenRec

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

bFlatten and pprFlatten

• EPATHOBJ::bFlatten just goes through a list and
calls pprFlattenRec if a flag is set on the element

• EPATHOBJ::pprFlattenRec
• allocates a new pathrec
• initialises the new (but not the next at this point)
• sets the next of previous of the new to himself

new−>previous−>next = new ;

• ...

• if we control the struct we can write the position of
the new struct created by pprFlattenRec

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

bFlatten and pprFlatten

• EPATHOBJ::bFlatten just goes through a list and
calls pprFlattenRec if a flag is set on the element

• EPATHOBJ::pprFlattenRec
• allocates a new pathrec
• initialises the new (but not the next at this point)
• sets the next of previous of the new to himself

new−>previous−>next = new ;

• ...

• if we control the struct we can write the position of
the new struct created by pprFlattenRec

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

bFlatten and pprFlatten

• EPATHOBJ::bFlatten just goes through a list and
calls pprFlattenRec if a flag is set on the element

• EPATHOBJ::pprFlattenRec
• allocates a new pathrec
• initialises the new (but not the next at this point)
• sets the next of previous of the new to himself

new−>previous−>next = new ;

• ...

• if we control the struct we can write the position of
the new struct created by pprFlattenRec

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Getting execution

• We can write the address of something we don’t
control but we control the contents of the first pointer
in it: it’s the address of our next element in the list

• We can write in the HalDispatchTable our pointer on
the next will be considered as code when calling the
function.

• So we need an address which is a valid pointer for
the bFlatten loop and a valid code for execution like

inc eax ; 0x40
jmp dword ptr [ebp+0x40] ; 0x f f6540

• We will rewrite the HALDispatchTable[1], called by
NtQueryIntervalProfile and not used for a lot of other
things

• The ebp+0x40 corresponds to the second argument
of the NtQueryIntervalProfile where we put the
address of our shellcode

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Getting execution

• We can write the address of something we don’t
control but we control the contents of the first pointer
in it: it’s the address of our next element in the list

• We can write in the HalDispatchTable our pointer on
the next will be considered as code when calling the
function.

• So we need an address which is a valid pointer for
the bFlatten loop and a valid code for execution like

inc eax ; 0x40
jmp dword ptr [ebp+0x40] ; 0x f f6540

• We will rewrite the HALDispatchTable[1], called by
NtQueryIntervalProfile and not used for a lot of other
things

• The ebp+0x40 corresponds to the second argument
of the NtQueryIntervalProfile where we put the
address of our shellcode

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Getting execution

• We can write the address of something we don’t
control but we control the contents of the first pointer
in it: it’s the address of our next element in the list

• We can write in the HalDispatchTable our pointer on
the next will be considered as code when calling the
function.

• So we need an address which is a valid pointer for
the bFlatten loop and a valid code for execution like

inc eax ; 0x40
jmp dword ptr [ebp+0x40] ; 0x f f6540

• We will rewrite the HALDispatchTable[1], called by
NtQueryIntervalProfile and not used for a lot of other
things

• The ebp+0x40 corresponds to the second argument
of the NtQueryIntervalProfile where we put the
address of our shellcode

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Getting execution

• We can write the address of something we don’t
control but we control the contents of the first pointer
in it: it’s the address of our next element in the list

• We can write in the HalDispatchTable our pointer on
the next will be considered as code when calling the
function.

• So we need an address which is a valid pointer for
the bFlatten loop and a valid code for execution like

inc eax ; 0x40
jmp dword ptr [ebp+0x40] ; 0x f f6540

• We will rewrite the HALDispatchTable[1], called by
NtQueryIntervalProfile and not used for a lot of other
things

• The ebp+0x40 corresponds to the second argument
of the NtQueryIntervalProfile where we put the
address of our shellcode

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Getting execution

• We can write the address of something we don’t
control but we control the contents of the first pointer
in it: it’s the address of our next element in the list

• We can write in the HalDispatchTable our pointer on
the next will be considered as code when calling the
function.

• So we need an address which is a valid pointer for
the bFlatten loop and a valid code for execution like

inc eax ; 0x40
jmp dword ptr [ebp+0x40] ; 0x f f6540

• We will rewrite the HALDispatchTable[1], called by
NtQueryIntervalProfile and not used for a lot of other
things

• The ebp+0x40 corresponds to the second argument
of the NtQueryIntervalProfile where we put the
address of our shellcode

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Getting execution

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Chronology

• Get the addresses in the kernel we need for the
exploit (HALDispatchTable, . . .)

• Allocate three structs PATHRECORD that we need,
in particular the one at a precise address
(0x4065ff40)

• Put memory pressure
• Put the address of our first PATHRECORD that we

want into the freelist
• Flatten the path => write in the HALDispatchTable
• Call NtQueryIntervalProfile => get shellcode

executed

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Chronology

• Get the addresses in the kernel we need for the
exploit (HALDispatchTable, . . .)

• Allocate three structs PATHRECORD that we need,
in particular the one at a precise address
(0x4065ff40)

• Put memory pressure
• Put the address of our first PATHRECORD that we

want into the freelist
• Flatten the path => write in the HALDispatchTable
• Call NtQueryIntervalProfile => get shellcode

executed

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Chronology

• Get the addresses in the kernel we need for the
exploit (HALDispatchTable, . . .)

• Allocate three structs PATHRECORD that we need,
in particular the one at a precise address
(0x4065ff40)

• Put memory pressure
• Put the address of our first PATHRECORD that we

want into the freelist
• Flatten the path => write in the HALDispatchTable
• Call NtQueryIntervalProfile => get shellcode

executed

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Chronology

• Get the addresses in the kernel we need for the
exploit (HALDispatchTable, . . .)

• Allocate three structs PATHRECORD that we need,
in particular the one at a precise address
(0x4065ff40)

• Put memory pressure
• Put the address of our first PATHRECORD that we

want into the freelist
• Flatten the path => write in the HALDispatchTable
• Call NtQueryIntervalProfile => get shellcode

executed

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Chronology

• Get the addresses in the kernel we need for the
exploit (HALDispatchTable, . . .)

• Allocate three structs PATHRECORD that we need,
in particular the one at a precise address
(0x4065ff40)

• Put memory pressure
• Put the address of our first PATHRECORD that we

want into the freelist
• Flatten the path => write in the HALDispatchTable
• Call NtQueryIntervalProfile => get shellcode

executed

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Chronology

• Get the addresses in the kernel we need for the
exploit (HALDispatchTable, . . .)

• Allocate three structs PATHRECORD that we need,
in particular the one at a precise address
(0x4065ff40)

• Put memory pressure
• Put the address of our first PATHRECORD that we

want into the freelist
• Flatten the path => write in the HALDispatchTable
• Call NtQueryIntervalProfile => get shellcode

executed

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Plan

6 Conclusion

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Conclusion

• A lot of improvements between XP and Windows 8
• Lot of checks so exploits are really harder
• Still doable

A look inside the
Windows Kernel

Bruno Pujos

Introduction

Basics of Windows
Kernel

CVE-2011-1237

Evolution from XP
to 8

CVE-2013-3660

Conclusion

Questions ?

Questions ?

• Tarjei Mandt (@kernelpool)
• Tavis Ormandy (@taviso)
• Mateusz Jurvczyk (@j00ru)
• Alex Ionescu (@aionescu)
• Ivanlefou (@Ivanlef0u)

	Introduction
	Basics of Windows Kernel
	CVE-2011-1237
	Evolution from XP to 8
	CVE-2013-3660
	Conclusion

