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The LFH?

• Low Fragmentation Heap: Front End allocator
• Userland (sorry, no kernel this time. . . )
• Windows 8/8.1 32bit
• Why talk about it?
• Some details were left out to keep it simple
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General Memory Management
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A little bit of history

• LFH released with Windows XP (2001) but not
enabled by default

• The Look-Aside-List was another Front End allocator
at that time

• Since Vista, no more LAL, and LFH is enabled by
default
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_HEAP & _LFH_HEAP
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_HEAP_BUCKET
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_HEAP_LOCAL_SEGMENT_INFO
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Subsegment & UserBlocks
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Allocation Workflow
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LFH activation & Back-end

• RtlpAllocateHeap(_HEAP *Heap, int Flags, int Size,
unsigned int RoundedSize, _LIST_ENTRY *ListHint,
int *RetCode)

• HEAP_NO_SERIALIZE
• Heap->CompatibilityFlags & 0x20000000: activation

of the LFH needed
• RtlpPerformHeapMaintenance(_HEAP *Heap)
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LFH activation & Back-end

Allocation of size < 0x4000

• if the LFH is not activated: set the CompatibilityFlags
• if the LFH is not activated for this size:

• add 0x21 in the Heap->FrontEndHeapUsageData[]
• if 0x10 consecutive allocations or

Heap->FrontEndHeapUsageData[] > 0xff00: activate
for the next allocation of the same size

Activation for a given size

• set Heap->FrontEndHeapUsageData[] to the
BucketIndex

• set Heap->FrontEndHeapStatusBitmap[] to 1
(activated)
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Allocation Workflow
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LFH Allocation

• size <= 0x4000
• HEAP_NO_SERIALIZE
• Heap->FrontEndHeapStatusBitmap == 1
• RtlpLowFragHeapAllocFromContext(_LFH_HEAP

*LFH, unsigned short BucketIndex, int Size, char
Flags)
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LFH Allocation Workflow
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LFH Initialisation
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LFH Initialisation
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LFH Initialisation
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LFH Initialisation
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LFH Randomization
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LFH Randomization
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LFH Randomization

• RtlpLowFragHeapRandomData
• LowFragHeapDataSlot (in the TEB)
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LFH Allocation
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LFH Allocation
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LFH Cache
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LFH Cache

• Check the cache
• Try to allocate UserBlocks and/or Subsegment
• Fail if RtlAllocateHeap fails
• Update RtlpLowFragHeapRandomData in

Subsegment allocation
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LFH Cache
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LFH Allocation Workflow
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Free Workflow
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Free Back-end

• RtlpFreeHeap(_HEAP *Heap, int Flags,
_HEAP_ENTRY *Header, void *Chunk)

• Decrement the counter in
Heap->FrontEndHeapUsageData[]
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Free Workflow
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LFH Free

• No longer handled by RtlpLowFragHeapFree
• Same algorithm idea in Windows 8 and 8.1
• Header->UnusedBytes & 0x80
• Always returns true



An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

LFH Free Workflow



An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

LFH Free Initialisation
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LFH Free Initialisation
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LFH Free Mark
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LFH Free Mark
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LFH Free Fail
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LFH Free Check UserBlocks
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3 Windows Mitigation
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Attackers goal

• The goal is always to control eip
• For a ”generic” heap exploitation:

• Arbitrary write
• Trigger a free
• . . .
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Safe Linking/Unlinking

• Moore 2005, but also in Linux malloc. . .
• The idea is to corrupt a double-linked list (stored in

metadata)
• Could allow arbitrary 4-write
• Check introduced in Windows XP SP2, and

generalized since then
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Arbitrary Free

• Ben Hawkes 2008
• Before Windows 8:

i f ( Header−>UnusedBytes == 0x5 )
Header −= 8 ∗ Header−>SegmentOffset ;

• Overwrite of a _HEAP_ENTRY would allow a
semi-arbitrary free

• Windows 8 introduces a check
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Ben Hawkes

• LFH overflow: structures have changed
• FrontEndHeapUsageData
• _RTL_BITMAP

• Off-by-one: encoded and changes the structure
• Heap Overflows: no more free of the heap
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FreeEntryOffset Overwrite

• Chris Valasek 2010
• Before Windows 8, a free chunk would contain a

NextOffset field of a free chunk in the first 2 bytes
after the _HEAP_ENTRY

• Overwrite it so that a chunk will be allocated and
allow a semi-controlled allocation (the next one)

• Rewrite data of another chunk :)
• NextOffset doesn’t exist in Windows 8, use

_HEAP_USERDATA_HEADER to locate free chunks
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LFH GuardPages

• Since Windows 8
• Created during a UserBlocks allocation
• Protection against sequential overflow
• Protection to prevent UserBlocks overwrite
• PAGE_NOACCESS
• Possible to avoid triggering them by doing few

allocations
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Fast fail

• HeapEnableTerminationOnCorruption
• Fast fail is an interrupt (int 0x29) which halts the

execution of the process
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Non-deterministic virtual allocation

• For a request of a certain size
(> VirtualMemoryThreshold), use
NtAllocateVirtualMemory

• Before Windows 8: predictable memory layouts.
• Since Windows 8: the virtual allocation start at a

random offset within the whole virtual chunk.
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Non-deterministic allocation

• Already covered
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_HEAP_USERDATA_HEADER Overwrite

• In Windows 8, the BlockStride and the
FirstAllocationOffset are not encoded

• Header when allocating:

Header = (_HEAP_ENTRY) UserBlocks +
UserBlocks−> F i r s t A l l o c a t i o n O f f s e t +
( NewHint ∗ UserBlocks−>B lockSt r i de ) ;

• If we overwrite FirstAllocationOffset and/or
BlockStride, a semi-arbitrary address is returned by
the LFH

• Since Windows 8.1, FirstAllocationOffset and
BlockStride are encoded:
EncodedOffsets ˆ UserBlocks ˆ LFH ˆ RtlpLFHKey
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Determinism

• Non-deterministic allocations break a lot of things
• How to be determinist again?
• RtlpLowFragHeapRandomData are random but fix
• LowFragHeapDataSlot is a counter with a modulo

0x100
• Just allocate and free a 0x100 chunk to have the

same value again from
RtlpLowFragHeapRandomData

• Need to avoid subsegment allocation
• Need to be able to allocate and free the specific size

we want
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Determinism

• Not only useful for use-after-free, but also for
overflow
• Allocate the vulnerable chunk
• Allocate and Free for 0x100 times
• Allocate the chunk to overflow
• Trigger the overflow

• Work only if we are sure that the chunk next to the
vulnerable one is free (and we are lucky enough not
to allocate the last chunk. . . )
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Bitmap Flipping 2.0

• Valasek & Mandt 2012
• When a free is made, the offset of the byte to clear in

the bitmap is determined by Header->Previous
• If we can overwrite the Heap->Previous it could to go

out of the bitmap and set one bit to 0
• Problem: we need to overwrite the subsegment

encoded with a good value
• Should still work if it can be triggered
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Conclusion

”Application specific attacks are the future”
Ben Hawkes 2008
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Link

• http://illmatics.com/Windows%208
%20Heap%20Internals.pdf

• http://illmatics.com/Understanding_the_LFH.pdf
• https://media.blackhat.com/eu-13/briefings/Liu/bh-

eu-13-liu-advanced-heap-WP.pdf
• https://www.lateralsecurity.com/downloads/hawkes_

ruxcon-nov-2008.pdf
• http://sebug.net/paper/Meeting-

Documents/hitbsecconf2012ams/D2T2%20-
%20Steven%20Seeley%20-
%20Ghost%20In%20the%20Windows%20
7%20Allocator.pdf

• http://www.blackhat.com/presentations/bh-usa-
09/MCDONALD/BHUSA09-McDonald-
WindowsHeap-PAPER.pdf

• ntdll.dll 6.3.9600.17031 (Windows 8.1)
• ntdll.dll 6.2.9200.16384 (Windows 8)
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