
An overview of the
LFH

Bruno Pujos

Introduction

How it works

Windows
Mitigation

Observations

Conclusion

An overview of the LFH

Bruno Pujos

July 20, 2014

An overview of the
LFH

Bruno Pujos

Introduction

How it works

Windows
Mitigation

Observations

Conclusion

Plan

1 Introduction

An overview of the
LFH

Bruno Pujos

Introduction

How it works

Windows
Mitigation

Observations

Conclusion

The LFH?

• Low Fragmentation Heap: Front End allocator
• Userland (sorry, no kernel this time. . .)
• Windows 8/8.1 32bit
• Why talk about it?
• Some details were left out to keep it simple

An overview of the
LFH

Bruno Pujos

Introduction

How it works

Windows
Mitigation

Observations

Conclusion

General Memory Management

An overview of the
LFH

Bruno Pujos

Introduction

How it works

Windows
Mitigation

Observations

Conclusion

A little bit of history

• LFH released with Windows XP (2001) but not
enabled by default

• The Look-Aside-List was another Front End allocator
at that time

• Since Vista, no more LAL, and LFH is enabled by
default

An overview of the
LFH

Bruno Pujos

Introduction

How it works

Windows
Mitigation

Observations

Conclusion

Plan

1 Introduction

2 How it works
Structures
Allocation
Free

3 Windows Mitigation

4 Observations

5 Conclusion

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

Plan

2 How it works
Structures
Allocation
Free

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

Plan

2 How it works
Structures
Allocation
Free

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

General Overview

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

General Overview

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

_HEAP & _LFH_HEAP

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

General Overview

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

_HEAP_BUCKET

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

General Overview

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

_HEAP_LOCAL_SEGMENT_INFO

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

General Overview

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

Subsegment & UserBlocks

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

Plan

2 How it works
Structures
Allocation
Free

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

Allocation Workflow

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

LFH activation & Back-end

• RtlpAllocateHeap(_HEAP *Heap, int Flags, int Size,
unsigned int RoundedSize, _LIST_ENTRY *ListHint,
int *RetCode)

• HEAP_NO_SERIALIZE
• Heap->CompatibilityFlags & 0x20000000: activation

of the LFH needed
• RtlpPerformHeapMaintenance(_HEAP *Heap)

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

LFH activation & Back-end

Allocation of size < 0x4000

• if the LFH is not activated: set the CompatibilityFlags
• if the LFH is not activated for this size:

• add 0x21 in the Heap->FrontEndHeapUsageData[]
• if 0x10 consecutive allocations or

Heap->FrontEndHeapUsageData[] > 0xff00: activate
for the next allocation of the same size

Activation for a given size

• set Heap->FrontEndHeapUsageData[] to the
BucketIndex

• set Heap->FrontEndHeapStatusBitmap[] to 1
(activated)

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

Allocation Workflow

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

LFH Allocation

• size <= 0x4000
• HEAP_NO_SERIALIZE
• Heap->FrontEndHeapStatusBitmap == 1
• RtlpLowFragHeapAllocFromContext(_LFH_HEAP

*LFH, unsigned short BucketIndex, int Size, char
Flags)

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

LFH Allocation Workflow

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

LFH Initialisation

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

LFH Initialisation

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

LFH Initialisation

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

LFH Initialisation

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

LFH Randomization

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

LFH Randomization

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

LFH Randomization

• RtlpLowFragHeapRandomData
• LowFragHeapDataSlot (in the TEB)

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

LFH Allocation

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

LFH Allocation

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

LFH Cache

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

LFH Cache

• Check the cache
• Try to allocate UserBlocks and/or Subsegment
• Fail if RtlAllocateHeap fails
• Update RtlpLowFragHeapRandomData in

Subsegment allocation

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

LFH Cache

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

LFH Allocation Workflow

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

Plan

2 How it works
Structures
Allocation
Free

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

Free Workflow

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

Free Back-end

• RtlpFreeHeap(_HEAP *Heap, int Flags,
_HEAP_ENTRY *Header, void *Chunk)

• Decrement the counter in
Heap->FrontEndHeapUsageData[]

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

Free Workflow

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

LFH Free

• No longer handled by RtlpLowFragHeapFree
• Same algorithm idea in Windows 8 and 8.1
• Header->UnusedBytes & 0x80
• Always returns true

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

LFH Free Workflow

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

LFH Free Initialisation

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

LFH Free Initialisation

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

LFH Free Mark

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

LFH Free Mark

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

LFH Free Fail

An overview of the
LFH

Bruno Pujos

Introduction

How it works
Structures

Allocation

Free

Windows
Mitigation

Observations

Conclusion

LFH Free Check UserBlocks

An overview of the
LFH

Bruno Pujos

Introduction

How it works

Windows
Mitigation

Observations

Conclusion

Plan

3 Windows Mitigation

An overview of the
LFH

Bruno Pujos

Introduction

How it works

Windows
Mitigation

Observations

Conclusion

Attackers goal

• The goal is always to control eip
• For a ”generic” heap exploitation:

• Arbitrary write
• Trigger a free
• . . .

An overview of the
LFH

Bruno Pujos

Introduction

How it works

Windows
Mitigation

Observations

Conclusion

Safe Linking/Unlinking

• Moore 2005, but also in Linux malloc. . .
• The idea is to corrupt a double-linked list (stored in

metadata)
• Could allow arbitrary 4-write
• Check introduced in Windows XP SP2, and

generalized since then

An overview of the
LFH

Bruno Pujos

Introduction

How it works

Windows
Mitigation

Observations

Conclusion

Arbitrary Free

• Ben Hawkes 2008
• Before Windows 8:

i f (Header−>UnusedBytes == 0x5)
Header −= 8 ∗ Header−>SegmentOffset ;

• Overwrite of a _HEAP_ENTRY would allow a
semi-arbitrary free

• Windows 8 introduces a check

An overview of the
LFH

Bruno Pujos

Introduction

How it works

Windows
Mitigation

Observations

Conclusion

Ben Hawkes

• LFH overflow: structures have changed
• FrontEndHeapUsageData
• _RTL_BITMAP

• Off-by-one: encoded and changes the structure
• Heap Overflows: no more free of the heap

An overview of the
LFH

Bruno Pujos

Introduction

How it works

Windows
Mitigation

Observations

Conclusion

FreeEntryOffset Overwrite

• Chris Valasek 2010
• Before Windows 8, a free chunk would contain a

NextOffset field of a free chunk in the first 2 bytes
after the _HEAP_ENTRY

• Overwrite it so that a chunk will be allocated and
allow a semi-controlled allocation (the next one)

• Rewrite data of another chunk :)
• NextOffset doesn’t exist in Windows 8, use

_HEAP_USERDATA_HEADER to locate free chunks

An overview of the
LFH

Bruno Pujos

Introduction

How it works

Windows
Mitigation

Observations

Conclusion

LFH GuardPages

• Since Windows 8
• Created during a UserBlocks allocation
• Protection against sequential overflow
• Protection to prevent UserBlocks overwrite
• PAGE_NOACCESS
• Possible to avoid triggering them by doing few

allocations

An overview of the
LFH

Bruno Pujos

Introduction

How it works

Windows
Mitigation

Observations

Conclusion

Fast fail

• HeapEnableTerminationOnCorruption
• Fast fail is an interrupt (int 0x29) which halts the

execution of the process

An overview of the
LFH

Bruno Pujos

Introduction

How it works

Windows
Mitigation

Observations

Conclusion

Non-deterministic virtual allocation

• For a request of a certain size
(> VirtualMemoryThreshold), use
NtAllocateVirtualMemory

• Before Windows 8: predictable memory layouts.
• Since Windows 8: the virtual allocation start at a

random offset within the whole virtual chunk.

An overview of the
LFH

Bruno Pujos

Introduction

How it works

Windows
Mitigation

Observations

Conclusion

Non-deterministic allocation

• Already covered

An overview of the
LFH

Bruno Pujos

Introduction

How it works

Windows
Mitigation

Observations

Conclusion

_HEAP_USERDATA_HEADER Overwrite

• In Windows 8, the BlockStride and the
FirstAllocationOffset are not encoded

• Header when allocating:

Header = (_HEAP_ENTRY) UserBlocks +
UserBlocks−> F i r s t A l l o c a t i o n O f f s e t +
(NewHint ∗ UserBlocks−>B lockSt r i de) ;

• If we overwrite FirstAllocationOffset and/or
BlockStride, a semi-arbitrary address is returned by
the LFH

• Since Windows 8.1, FirstAllocationOffset and
BlockStride are encoded:
EncodedOffsets ˆ UserBlocks ˆ LFH ˆ RtlpLFHKey

An overview of the
LFH

Bruno Pujos

Introduction

How it works

Windows
Mitigation

Observations

Conclusion

Plan

4 Observations

An overview of the
LFH

Bruno Pujos

Introduction

How it works

Windows
Mitigation

Observations

Conclusion

Determinism

• Non-deterministic allocations break a lot of things
• How to be determinist again?
• RtlpLowFragHeapRandomData are random but fix
• LowFragHeapDataSlot is a counter with a modulo

0x100
• Just allocate and free a 0x100 chunk to have the

same value again from
RtlpLowFragHeapRandomData

• Need to avoid subsegment allocation
• Need to be able to allocate and free the specific size

we want

An overview of the
LFH

Bruno Pujos

Introduction

How it works

Windows
Mitigation

Observations

Conclusion

Determinism

• Not only useful for use-after-free, but also for
overflow
• Allocate the vulnerable chunk
• Allocate and Free for 0x100 times
• Allocate the chunk to overflow
• Trigger the overflow

• Work only if we are sure that the chunk next to the
vulnerable one is free (and we are lucky enough not
to allocate the last chunk. . .)

An overview of the
LFH

Bruno Pujos

Introduction

How it works

Windows
Mitigation

Observations

Conclusion

Bitmap Flipping 2.0

• Valasek & Mandt 2012
• When a free is made, the offset of the byte to clear in

the bitmap is determined by Header->Previous
• If we can overwrite the Heap->Previous it could to go

out of the bitmap and set one bit to 0
• Problem: we need to overwrite the subsegment

encoded with a good value
• Should still work if it can be triggered

An overview of the
LFH

Bruno Pujos

Introduction

How it works

Windows
Mitigation

Observations

Conclusion

Plan

5 Conclusion

An overview of the
LFH

Bruno Pujos

Introduction

How it works

Windows
Mitigation

Observations

Conclusion

Conclusion

”Application specific attacks are the future”
Ben Hawkes 2008

An overview of the
LFH

Bruno Pujos

Introduction

How it works

Windows
Mitigation

Observations

Conclusion

Link

• http://illmatics.com/Windows%208
%20Heap%20Internals.pdf

• http://illmatics.com/Understanding_the_LFH.pdf
• https://media.blackhat.com/eu-13/briefings/Liu/bh-

eu-13-liu-advanced-heap-WP.pdf
• https://www.lateralsecurity.com/downloads/hawkes_

ruxcon-nov-2008.pdf
• http://sebug.net/paper/Meeting-

Documents/hitbsecconf2012ams/D2T2%20-
%20Steven%20Seeley%20-
%20Ghost%20In%20the%20Windows%20
7%20Allocator.pdf

• http://www.blackhat.com/presentations/bh-usa-
09/MCDONALD/BHUSA09-McDonald-
WindowsHeap-PAPER.pdf

• ntdll.dll 6.3.9600.17031 (Windows 8.1)
• ntdll.dll 6.2.9200.16384 (Windows 8)

	Introduction
	How it works
	Structures
	Allocation
	Free

	Windows Mitigation
	Observations
	Conclusion

