
Windows	10	Pool	Party

1.1

BAYET	Corentin

2017
1 . 1

Windows	10	Pool	Party

Exploitation	in	the	NonPagedPool
Exploitation	at	medium	integrity	level
Attacking	drivers	and	IOCTLs
Tools	and	methods	to	attack	pool

What	we	WILL	talk	about

What	we	WONT	talk	about

Win32k.sys,	GDI	/	USER	objects
Exploitation	at	low	integrity	level

1.2
1 . 2

First	crash

2.1
2 . 1

What	is	the	kernel	pool	?

Place	for	every	allocation	in	the	windows	kernel
Common	for	every	drivers
Specific	allocator	and	structures
Several	types:

NonPagedPool
PagedPool
....

Basically,	a	list	of	pages	fragmented	in	chunks	!

2.2
2 . 2

A	pool	chunk

2.3
2 . 3

First	crash
IOCTL:	Input/Ouput	Control

BOOL	WINAPI	DeviceIoControl(
		In								HANDLE							hDevice,
		In								DWORD								dwIoControlCode,
		_In_opt_				LPVOID							lpInBuffer,
		In								DWORD								nInBufferSize,
		_Out_opt_			LPVOID							lpOutBuffer,
		In								DWORD								nOutBufferSize,
		_Out_opt_			LPDWORD						lpBytesReturned,
		_Inout_opt_	LPOVERLAPPED	lpOverlapped
);

I/O	Control	Code

2.4
2 . 4

First	crash
METHOD_BUFFERED:
1.	 The	I/O	Manager	allocates	a	buffer	in	the	NonPaged	Pool

with	the	biggest	size	provided:	it's	the	SystemBuffer
2.	 The	I/O	Manager	copies	the	InputBuffer	in	the

SystemBuffer	and	pass	it	to	the	driver
3.	 The	driver	handles	the	IOCTL,	and	writes	the	return	in	the

SystemBuffer	by	overwriting	the	input.	The	driver	must
also	tell	to	the	I/O	Manager	how	much	he	has	written.

4.	 The	I/O	Manager	copies	the	content	of	the	SystemBuffer	in
the	OutputBuffer	using	the	size	provided	by	the	driver.

So	we	control	the	size	of	the	buffer	used	for	input	and
ouput	in	drivers...	Great	Attack	Vector	!

2.5
2 . 5

The	vulnerability

About	CVE-2017-6008

A	memcpy	is	called	with	following	arguments:

Dest:	The	SystemBuffer	(we	control	the	size)
Src:	A	full	controlled	buffer	(from	our	Input	Buffer)
Size:	the	size	of	src

Classic	Buffer	Overflow...	But	in	the	NonPagedPool		!

2.6
2 . 6

Pool	History

Tarjei	Mandt	:

«	Kernel	Pool	Exploitation	on	Windows	7	»

Deobfuscate	Pool	Internals
Presents	severals	generic	attacks

2.7
2 . 7

http://www.mista.nu/research/MANDT-kernelpool-PAPER.pdf
http://www.mista.nu/research/MANDT-kernelpool-PAPER.pdf

Points	to	data
controlled	by

attacker

Using	a	pool	buffer	overflow	to	overwrite
Process	pointer
Craft	a	fake	EPROCESS	structure
Triggers	an	arbitrary	decrementation
when	the	overflowed	chunk	is	free

Quota	Process	Pointer	Overflow

2.8
2 . 8

DEMO

2 . 9

History	of	the	Pool

REAL	safe	linking/unlinking
Pool	Index	validation
SMEP
MIN_MAP_ADDR	(reverted	on	windows	7	and	vista	x64)
NonPagedPoolNx	(DEP)

Windows	8	Introduced	a	lot	of	mitigations:

About	the	attack	we	used:
Process	Billed	encoded	with	a	cookie
The	free	algorithms	checks	if	the	pointer	is	in	kernel-
land

3.1
3 . 1

Nowadays	Pool	Chunk

Process	Billed	encoded:
PoolCookie	XOR	Chunk	Address	XOR	Pointer

Checked	before	use

3 . 2

Today

Exploiting	vulnerabilities	in	the	Pool	is	pretty	hard
No	generic	attacks

Goal:	exploit	the	very	same	pool	buffer
overflow	on	Windows	10

3.3
3 . 3

What	do	we	need
Quota	Process	Pointer	Overwrite:

The	Pool	Cookie
The	address	of	the	overflowed	chunk
Arbitrary	data	in	kernel-land	at	known	address

Seems	impossible...

3.4
3 . 4

Pool	Spraying
Spraying	is	the	art	of	making	the	further
allocations	predictible	using	the	allocator
behavior
Provides	you	knowledge	and	control

4.1
4 . 1

Allocator	Behavior

Lookaside	list	(for	chunks	with	a	size	<=	0x200)
ListHeads	list

Two	lists	of	free	chunks	:

4.2
4 . 2

Lookaside	List

Contains	chunk	with	a	size	≤	0x200	bytes

Can	contains	only	255	chunks	of	the
same	size

4.3
4 . 3

Allocator	behavior
Allocation	algorithm

4.4
4 . 4

Allocator	behavior
Allocation	of	a	new	page

4.5
4 . 5

Allocator	behavior
Free	algorithm

4.6
4 . 6

Windows	API	tools

A	lot	of	different	objects:
Reserved	Objects
Semaphores
Processes
Register	keys
Files
…

With	various	size
Allocated	in	differents	pools	(Paged,	NonPaged...)

Windows	named	objects	:

5.1
5 . 1

Windows	API	tools

In	userland,	use	a	handle	to	interact	with	the	object	!

5.2
5 . 2

Basic	Pool	Spraying
Step	1:	Derandomize	the	pool

Empty	the	Lookaside	List
Empty	the	ListHead	List
Create	pages	filled	of	our	object

AKA	:	Massively	allocate	chunks

6.1
6 . 1

Basic	Pool	Spraying

User-land Kernel-land
Step	2:	Create	Gaps

CloseHandle() Chunks	are	freed	and	coalesced6.2
6 . 2

Basic	Pool	Spraying
Problems:

We	can't	predict	allocations	with	a	size	<=	0x200	bytes
Or	we	need	an	object	with	the	exact	same	size	of	the	gap
we	want...

Even	if	it's	very	likely,	we're	not	sure	the	gaps	we	created
actually	exists
We	don't	know	the	kernel	addresses	of	our	gaps

We	can	fix	this

6.3
6 . 3

Another	windows	tool

NtQuerySystemInformation

SystemExtendedHandleInformation

Retrieve	any	object's	kernel	address	using	its	handle

Well	known	leak

6.4
6 . 4

Advanced	Pool	Spraying

Step	1	:	Derandomize	the	Pool

Step	2	:	Find	the	perfect	gap

7.1
7 . 1

Leak	addresses

Check	if	offsets	are	correct

Step	2	:	Find	the	perfect	gap

Advanced	Pool	Spraying

7.2
7 . 2

Step	3	:	Enjoy	your	gaps	!

Advanced	Pool	Spraying

We	can	predict	a	future	allocation	at	100%
And	we	know	its	kernel	address
Just	Windows,	only	Windows

Time	to	start	having	fun	!

7.3
7 . 3

What	do	we	need
Quota	Process	Pointer	Overwrite:

The	Pool	Cookie
The	address	of	the	overflowed	chunk
Arbitrary	data	in	kernel-land	at	known	address

8.1
8 . 1

Arbitrary	data	in	kernel-land	at
known	address

CreatePrivateNamespace()	Function:

In	paged	pool,	in	the	chunk	of	the	object	allocated

8.2
8 . 2

Arbitrary	data	in	kernel-land	at
known	address

8.3
8 . 3

What	do	we	need
Quota	Process	Pointer	Overwrite:

The	Pool	Cookie
The	address	of	the	overflowed	chunk
Arbitrary	data	in	kernel-land

8.4
8 . 4

The	Pool	Cookie

Symbol:	nt!ExpPoolQuotaCookie
Generated	at	boot
Good	enthropy

8.5
8 . 5

Process	Billed	encoded:
PoolCookie	XOR	Chunk	Address	XOR	Pointer

The	Pool	Cookie

Allocated	chunkFree	chunk

Process	Billed	encoded:
PoolCookie	XOR	Chunk	Address

8.6
8 . 6

The	Pool	Cookie
1.	 Spray	the	pool	in	order	to	have	controllable

chunks
2.	 Free	a	chunk
3.	 Free	the	chunk	just	before
4.	 Reallocate	a	chunk	with	the	size	of	the	gap
5.	 The	data	is	not	overwritten...	With	a	correct

IOCTL,	you	might	be	able	to	read	the	old
headers...	containing	the	PoolCookie	XORED	with
old	chunk	address

8.7
8 . 7

About	CVE-2017-7441

The	Pool	Cookie

Use	our	input	to	call	the	function	RtlLookupElementGenericTableAvl
Write	the	result	in	the	SystemBuffer	for	return	but	doesn't	wipe	the
whole	buffer
Because	of	unicode	and	bad	calculation,	specify	a	wrong	number	to
the	IOManager:	the	driver	write	n	bytes	and	tell	n+2	to	the	driver
2	bytes	Out-Of-Bounds	read
It's	enough	to	leak	the	PoolCookie	!

8.8
8 . 8

What	do	we	need
Quota	Process	Pointer	Overwrite:

The	Pool	Cookie
The	address	of	the	overflowed	chunk
Arbitrary	data	in	kernel-land	at	known	address

Let's	exploit	!

9.1
9 . 1

DEMO

9 . 2

Conclusion
Drivers	are	still	a	great	attack	vector:

A	buffer	is	used	for	input/output	and	we	control	its	size...
A	buffer	overflow	is	exploitable	!

Be	careful	when	writing	a	driver...

You're	dealing	with	user	input	in	kernel	land...
The	tyniest	mistake	becomes	a	critical	vulnerability

Completely	remediate	the	NtQuerySystemInformation	leak	!

10.1
10 . 1

QUESTIONS	?

10.2
10 . 2

Thanks	for	listening	!
A	library	for	Pool	Spraying	:	
Source	code	of	the	exploits	:	

Full	paper	on	Pool	Spraying	:	

Full	paper	on	exploits	:	
My	twitter:	

https://github.com/cbayet/PoolSprayer
https://github.com/cbayet/Exploit-CVE-2017-

6008
https://trackwatch.com/windows-kernel-

pool-spraying
https://trackwatch.com

https://twitter.com/OnlyTheDuck

I'm	interested	in
job	offers	!

10 . 3

https://github.com/cbayet/PoolSprayer
https://github.com/cbayet/Exploit-CVE-2017-6008
https://trackwatch.com/windows-kernel-pool-spraying
https://trackwatch.com/
https://twitter.com/OnlyTheDuck

