

Windows 10 Pool Party

What we WILL talk about

Exploitation in the NonPagedPool
Exploitation at medium integrity level
Attacking drivers and IOCTLs

Tools and methods to attack pool

What we WONT talk about

1.2

Win32k.sys, GDI / USER objects
Exploitation at low integrity level

n: ARMATURE

2.1

First crash

A problem has been detected and Windows has been shut down to prevent damage to
your computer.

BAD POOL_HEADER

If this is the first time you've seen this Stop error screen, restart your
computer. If this screen appears again, follow these steps:

Check to make sure any new hardware or software is properly installed. If this is
a new installation, ask your hardware or software manufacturer for any Windows
updates you might need.

If problems continue, disable or remove any newly installed hardware or software.
Disable BIOS memory options such as caching or shadowing. If you need to use Safe
Mode to remove or disable components, restart your computer, press F8 to select
Advanced Startup Options, and then select Safe Mode.

Technical Information:
*** STOP: Ox00000019

Beginning dump of physical memory
Physical memory dump complete.

Contact your system administrator or technical support group for further
assistance.

n: ARMATURE

What is the kernel pool ?

e Place for every allocation in the windows kernel
e Common for every drivers

e Specific allocator and structures

e Several types:

= NonPagedPool

= PagedPool

Basically, a list of pages fragmented in chunks !

F.™ ARMATURE

2.2 T

Poolindex BlockSize Pool Type
Pool Tag

Process Billed

[+ |

BOOL WINAPI DeviceloControl(

In_ HANDLE hDevice,
In DWORD dwloControlCode,
_In_opt_ LPVOID IplnBuffer,
In_ DWORD ninBufferSize,
_Out_opt_ LPVOID |pOutBuffer,

In DWORD nOutBufferSize,

_Out_opt_ LPDWORD IpBytesReturned,
_Inout_opt_ LPOVERLAPPED IpOverlapped

IZB 27262524 232221 2019181716 15 14 13121110987 6

Required Transfer
Device Type Py Function Code Type

A_

First crash

METHOD_BUFFERED:

1.

2.5

The /0 Manager allocates a buffer in the NonPaged Pool
with the biggest size provided: it's the SystemBuffer

The I/0 Ma
SystemBufs

. The driver

SystemBufs
also tell to
The I/0 Ma
the Output

nager copies the InputBuffer in the

‘er and pass it to the driver

nandles the IOCTL, and writes the return in the
‘er by overwriting the input. The driver must
the 1/0 Manager how much he has written.
nager copies the content of the SystemBuffer in
Buffer using the size provided by the driver.

So we control the size of the buffer used for input and

ou

put in drivers... Great Attack Vector !
B ARMATURE
/T

The vulnerability

About CVE-2017-6008

A memcpy is called with fo

owing arguments:

¢ Dest: The SystemBu
e Src: A full controlled
e Size: the size of src

fer (we control the size)

ouffer (from our Input Buffer)

Classic Buffer Overflow... But in the NonPagedPool !

n_
)6 E - ARMATURE

2.7

Pool History

e Deobfuscate Pool Internals
e Presents severals generic attacks

n: ARMATURE

http://www.mista.nu/research/MANDT-kernelpool-PAPER.pdf
http://www.mista.nu/research/MANDT-kernelpool-PAPER.pdf

TAG

PROCESS

DEMO

History of the Pool

Windows 8 Introduced a lot of mitigations:

REAL safe linking/unlinking

Pool Index validation

SMEP

MIN_MAP_ADDR (reverted on windows 7 and vista x64)
NonPagedPoolNx (DEP)

About the attack we used:

e Process Billed encoded with a cookie
e The free algorithms checks if the pointer is in kernel-
land

F.™ ARMATURE

3.1 T

Poollndex BlockSize Pool Type
Pool Tag

Process Billed encoded:

PoolCookie XOR Chunk Address XOR Pointer

3.3

Today

e Exploiting vulnerabilities in the Pool is pretty hard
e No generic attacks

Goal: exploit the very same pool buffer
overflow on Windows 10

h: ARMATURE

Pool Spraying

e Spraying is the art of making the further
allocations predictible using the allocator
behavior

e Provides you knowledge and control

F.™ ARMATURE

4.1 T

Allocator Behavior

Two lists of free chunks :

e Lookaside list (for chunks with a size <= 0x200)
e ListHeads list

F.™ ARMATURE

4.2 T

Size: Ox40

Chunk 1
Chunk 2
Chunk 3

Chunk 4

Chunk 1
Chunk 2
Size: 0x150
Chunk 1
Chunk 2
Chunk 3
Chunk 4
Size: 0x200
Chunk 1

Chunk 2

Is requested size
bigger than 0x200
bytes ?

Is there a chunk in
the lookaside list
with the same size
as requested ?

Is there a chunk in
the ListHeads with
the same size as
requested ?

Is there a chunk in
the ListHeads
bigger than the size
requested ?

Allocate new page
and its first chunk

Return this chunk

Return this chunk

Split in two parts
and return the
correct chunk

Free chunk

Is chunk bigger
than 0x200 bytes ?

Is lookaside list
full 7

Free and
coalesce chunks

Is new chunk as
big as a page ?

Store in
ListHeads

Store in
lookaside list

Desallocate page

Windows API tools

Windows named objects :

¢ A lot of different objects:

Reserved Objects
Semaphores
Processes
Register keys
Files

e With various size
e Allocated in differents pools (Paged, NonPaged...)

F.™ ARMATURE

5.1 T

5.2

Windows API tools

##tdefine IOCO 1

NTSTATUS st}
HANDLE hRes:

//Allocate an IOCompletion Object
st = NtAllocateReserveObject(&hRes, @, I0CO);
if (INT SUCCESS(st}}

1

printf(”[-]Failed to allocate on the pool, %¥88x %@8x\n", GetLastError(), st);
exit(1l)};

¥

//Free the object
CloseHandle({hRes);

In userland, use a handle to interact with the object!

n: ARMATURE

Basic Pool Spraying

Step 1: Derandomize the pool

AKA : Massively allocate chunks

e Empty the Lookaside List
o Empty the ListHead List
e Create pages filled of our object

F.™ ARMATURE

6.1 T

Handle Chunk Address

001c fiffb1816960c100

0018 ffffb1816960c1cO

fiffb1816960c4c0

fiffb1816960c580

Basic Pool Spraying

Problems:

e We can't predict allocations with a size <= 0x200 bytes

m Or we need an object with the exact same size of the gap
we want...

e Even ifit's very likely, we're not sure the gaps we created
actually exists
e \We don't know the kernel addresses of our gaps

We can fix this

F.™ ARMATURE

6.3 T

Another windows tool

Well known leak

NtQuerySystemlinformation

a

SystemExtendedHandlelnformation

Retrieve any object's kernel address using its handle

F.™ ARMATURE

6.4 T

Advanced Pool Spraying

Step 1: Derandomize the Pool

Step 2 : Find the perfect gap

n_
7 1 n - ARMATURE

Handle
001c

0018

ffffb1816960c1cO

fiffb1816960c280

ffffb1816960c340

ffffb1816960c400

fifflb1816960c4c0

Advanced Pool Spraying
Step 3 : Enjoy your gaps'!

e We can predict a future allocation at 100%
e And we know its kernel address
e Just Windows, only Windows

Time to start having fun!

F.™ ARMATURE

7.3 T

What do we need

Quota Process Pointer Overwrite:

e The Pool Cookie
e The address of the overflowed chunk
e Arbitrary data in kernel-land at known address

F.™ ARMATURE

8.1 T

name

AMDLE name

| poolpage

-
=

walling pool pag

Addr

kd: dc ftffs
13

ffffads
Ffffadh
ffffads
ffffads
ffffads
ffffads
ffffads
ffffads

4" 3
4" 3
4" 3

U
=

éL_ e

0140
ao?o

a9
O01A0

Al
e ol

o040

m

=

MM M 0

L.

Ao + EI I:I

c248d470

ffffadid 33

2ffc1010 ffffadid
579%abaf 24544710

FreviousSize Poollndex PoolType

goon
0140
anzo
ao9n
0140

Al
1ol

go4n

03040323 734e674d4e
2dadcddl ffffadsd
: ffftfadid

13 HtEU
10 Frees
13 FSim
13 FHMin
3 Dire
3 HtF=
13 Httl

kd: lpoolpage Uxffffadid?fcchial
wallking pool page @ ffffadid2fcchbiOnn
B ElockSize FoolIndex FPoolType

Previoushize

tftffadidZfcchbinn:;
ttttadidZtccbls0:
tftffadidfcchZ10;
*fffftadidfcchZ40;
ttttadidZtccheal:
tftffadidZfcchy 40
ttttadidZ2tcchbs90;
ttttadidZtcchoel:
tftftftadidZfcchel;

AW memmemmm

Mmoo m¢«omim;mD

kds de ffffadS4?fcch?40

tftffadidd 2fcch44i
tftffadidd 2fccbhd!
ttfttaddd Z2fcchdE
tftffadidd 2fcchd?’
tftfttadid Z2fcchd
ttfttadid 2fcch4ds
tftffadid 2fcchdanl
ttttadid Zfcchdbi
ttttadid Z2fcchdch
ftftffadid 2fccbhdds
ttfttadid Z2fcchden
tftffadid 2fccbhdf

n

J o

A0 O

M EL O

H
o0

0150
aoco

RGN
O4&0
O0ADd
0550

aasn

0140
ol1an

+ 1AR
41414141
41414141
41414141
41414141
41414141
41414141
41414141
41414141
41414141
41414141
41414141
41414141

(046

L o |
L UUA)

41414141
41414141
41414141
41414141
41414141
41414141
41414141
41414141
41414141
41414141
41414141
41414141

o150

oo3n
0460
O0AD
0550
o050

O01A0

41414141
41414141
41414141
41414141
41414141
41414141
41414141
41414141
41414141
41414141
41414141
41414141

41414141
41414141
41414141
41414141
41414141
41414141
41414141
41414141
41414141
41414141
41414141
41414141

BAMAAAAARARAAALL
BAAAAAAAAARAAALD
BAAAAAAAARARRAALD
BAAAAAAAAARAAALD
BAAAAAAAARARAALL
BAAAAAAAARARRAALD
BAMAAAAAAARAAALD
BARAAAAAAARRAALD
BAAAAAAAARARAAALD
BARAAAAAAARAAALD
BAAAAAAAARARRAALD
BAAAARAAAARAALLD

What do we need

Quota Process Pointer Overwrite:

e The Pool Cookie
e The address of the overflowed chunk

e Arbitrary data in kernel-land-

F.™ ARMATURE

8.4 T

8.5

The Pool Cookie

o Symbol: nt!lExpPoolQuotaCookie
e Generated at boot
e Good enthropy

h: ARMATURE

Poollndex BlockSize Pool Type
Pool Tag

Process Billed encoded:

PoolCookie XOR Chunk Address

PROCESS

TAG

PROCESS

The Pool Cookie

About CVE-2017-7441

e Use our input to call the function RtlLookupElementGenericTableAv!

e Write the result in the SystemBuffer for return but doesn't wipe the
whole buffer

e Because of unicode and bad calculation, specity a wrong number to
the IOManager: the driver write n bytes and tell n+2 to the driver

e 2 bytes Out-Of-Bounds read

e It's enough to leak the PoolCookie !

F.™ ARMATURE

3.8 41

What do we need

Quota Process Pointer Overwrite:
The Pool Cooki
T d » : chunl

Arplitrarvy-agata i kKernel-itang at known -agaare

Let's exploit!

F.™ ARMATURE

9.1 T

DEMO

Conclusion

Drivers are still a great attack vector:

e A buffer is used for input/output and we control its size...
e A buffer overflow is exploitable !

Be careful when writing a driver...

e You're dealing with user input in kernel land...
e The tyniest mistake becomes a critical vulnerability

Completely remediate the NtQuerySysteminformation leak !

F.™ ARMATURE

10.1 T

10.

https://github.com/cbayet/PoolSprayer
https://github.com/cbayet/Exploit-CVE-2017-6008
https://trackwatch.com/windows-kernel-pool-spraying
https://trackwatch.com/
https://twitter.com/OnlyTheDuck

