
© 2023 REverse Tactics. All Rights Reserved.

1

Attacking hypervisors:

A practical case

ESCAPING FROM VIRTUALBOX

© 2023 REverse Tactics. All Rights Reserved.

2

Who am I ?
Security researcher and CTO of REverse Tactics.

Specialized in low-level software reverse engineering and exploit,

and in particular:

• Kernel and OS security

• Hypervisors

• Embedded Software

CORENTIN BAYET

https://www.reversetactics.com/

© 2023 REverse Tactics. All Rights Reserved.

3

Last year talk

© 2023 REverse Tactics. All Rights Reserved.

4

Pwn2Own Vancouver 2024

 Participated at Pwn2Own in March

 Hacking contest organized by ZDI

 Rewarded for demonstrating 0-day exploits on popular targets

 Has a virtualization category

© 2023 REverse Tactics. All Rights Reserved.

5

Pwn2Own rules (virtualization)

 Exploit needs to demonstrate Virtual Machine escape (VME)

 Start with administrator/root privileges in the guest (Linux or Windows)

 Must demonstrate code execution on the host

 Up-to-date Windows for Virtualbox

 Can be chained with elevation of privileges on the host for a bonus

 About configuration

 Virtual machines can have a great variety of configurations

 Big impact on the available attack surface

 Doesn’t have to target the default configuration

 But must represent a realistic real life scenario

 The organizer decides

© 2023 REverse Tactics. All Rights Reserved.

6

Oracle VirtualBox

 Popular hypervisor

 Open source

 Free

 Easy to use

 Working on Windows / Linux / MacOS

 Maintained by Oracle

 No team 100% dedicated to VirtualBox’s security

© 2023 REverse Tactics. All Rights Reserved.

7

Plan

02

Vulnerability

research

03

Exploit

Development

04

Conclusion

01

Definitions

© 2023 REverse Tactics. All Rights Reserved.

8

Plan

01

Definitions

© 2023 REverse Tactics. All Rights Reserved.

9

A few definitions

 Hypervisor: Software that manages one or multiple virtual machines
on a single physical computer

 Here, Virtualbox

 Host: Operating system running the hypervisor

 Here, Windows is running Virtualbox

 Guest: Operating system running in the virtual machine

 GPA: Guest Physical Address

 An address in the physical memory view of the guest

 Paravirtualization: virtualization technique

 Guest OS is modified to communicate directly with the hypervisor

 Improved performances

© 2023 REverse Tactics. All Rights Reserved.

10

Communication channels

 Exchange data through shared memory

 Direct Memory Access (DMA)

 Trigger specific actions through

 Port mapped Input/Output (PMIO)

 Privileged instructions: IN / OUT

 Memory Mapped IO (MMIO)

 Read / write in specific physical memory ranges

 Hypercalls

 Specific interfaces used with paravirtualized devices

© 2023 REverse Tactics. All Rights Reserved.

11

Plan

02

Vulnerability

research

01

Definitions

© 2023 REverse Tactics. All Rights Reserved.

12

Step 0: Setup

 Need a way to easily debug the Hypervisor

 For Virtualbox: GDB / Windbg

 Not much to say

 Need a way to easily test things from the guest

 And reach interesting code paths of the hypervisor

 How do we easily communicate with the hypervisor from the guest ?

© 2023 REverse Tactics. All Rights Reserved.

13

How to reach vulnerable code

 Communications channels through MMIO, PMIO, DMA, Hypercalls

 Read/write access to physical memory

 Execute privileged instructions

 You need ring-0 privilege

 So you are supposed to write kernel drivers

 Kernel drivers

 Written in compiled and low-level languages (usually C)

 Hell to compile

 Dependent of the operating system

 Dependent of the operating system VERSION

 I don’t want to do this every time I want to test something

© 2023 REverse Tactics. All Rights Reserved.

14

How to reach vulnerable code

 Chipsec

 Framework originally developed for testing the security of hardware or system
firmware (UEFI / BIOS)

 Already developed drivers for Windows and Linux that exposes privileged
operations

 Allocate / Read / Write physical memory

 Execute privileged instructions

 IN / OUT (PMIO)

 Hypercalls

 Read / Write in PCI

 Has a Python API !

 OS agnostic !

© 2023 REverse Tactics. All Rights Reserved.

15

How to reach vulnerable code

© 2023 REverse Tactics. All Rights Reserved.

16

Step 1: State of the art

 Very important step, not to neglect

 MUST put time into it

 Find generic information on the target

 Public documentation

 Source code organization

 Architecture

 Is it fuzzed ?

 How ?

© 2023 REverse Tactics. All Rights Reserved.

17

Step 1: State of the art
 Prior related security work

 Study previous vulnerabilities

 Understand common attack surfaces

 Note exploit techniques

 What kind of vulnerabilities are actually exploitable

 Might be useful later

 Extract vulnerable patterns

 The kind of bugs that can be found in code base

 Take time to really understand the bugs

 Even reproduce them if needed

 Might find some variants…

 This phase should give you list a of ideas

 Write a list !

© 2023 REverse Tactics. All Rights Reserved.

18

State of the art: CVE-2023-21988

 Uninitialized memory read in VirtualBox

 Found and exploited by @MajorTomSec Synacktiv for Pwn2Own 2023

 Bug affecting PGMPhysRead

 Function responsible for reading the physical memory of the guest to a

host buffer

 See it as an equivalent of copy_from_user or memcpy

 The source address is a GPA

© 2023 REverse Tactics. All Rights Reserved.

19

CVE-2023-21988

 This function will split the access page by page

 Because each guest physical page can be located at a different place in

host’s memory

 It also handle MMIO accesses

 If one of the GPA is registered as a MMIO, call the appropriate MMIO

handler

 If any error occurs during the MMIO handling fill up the output buffer and

return

© 2023 REverse Tactics. All Rights Reserved.

20

CVE-2023-21988

Note: code was simplified

© 2023 REverse Tactics. All Rights Reserved.

21

CVE-2023-21988

 Only calls memset for the current

page size.

 Remaining on the pvBuf buffer remains

uninitialized.

© 2023 REverse Tactics. All Rights Reserved.

22

CVE-2023-21988

 Bug allows to let some data uninitialized when reading from guest

physical memory

 Requires to control the GPA to trigger an error

 This is a very common pattern

 Requires to find a code that will write back this uninitialized data to the

guest

 Found in the XHCI device

 Impact:

 Leak uninitialized memory from the host

 Get some stack/heap pointers and defeat ASLR

© 2023 REverse Tactics. All Rights Reserved.

23

CVE-2023-21988

© 2023 REverse Tactics. All Rights Reserved.

24

CVE-2023-21988 - Patched

© 2023 REverse Tactics. All Rights Reserved.

25

CVE-2023-21988 - Patched

 What's happening there ?

© 2023 REverse Tactics. All Rights Reserved.

26

Pushing the issue deeper
 pgmPhysReadHandler

 Function that will call the appropriate MMIO handler for the given GPA

 How does a MMIO handler looks like ?

 A lot of different devices, a lot of different MMIO handlers

 Is supposed to fill the provided buffer depending on the given GPA

 Are they all doing it ?

© 2023 REverse Tactics. All Rights Reserved.

27

Pushing the issue deeper
 pgmPhysReadHandler

 Function that will call the appropriate MMIO handler for the given GPA

 How does a MMIO handler looks like ?

 A lot of different devices, a lot of different MMIO handlers

 Is supposed to fill the provided buffer depending on the given GPA

 Are they all doing it ?

© 2023 REverse Tactics. All Rights Reserved.

28

Pushing the issue deeper
 pgmPhysReadHandler

 Function that will call the appropriate MMIO handler for the given GPA

 How does a MMIO handler looks like ?

 A lot of different devices, a lot of different MMIO handlers

 Is supposed to fill the provided buffer depending on the given GPA

 Are they all doing it ?

 Nope !

© 2023 REverse Tactics. All Rights Reserved.

29

CVE-2024-21121

 No error during the callback

 pvBuf still not initialized

© 2023 REverse Tactics. All Rights Reserved.

30

CVE-2024-21121
 Found a variant of the bug

 Can use the same exploit technique as CVE-2023-21988

 Requires to find specific MMIO read handlers

 Must return a success without fully initializing the buffer

 Must be registered with the flag IOMMMIO_FLAGS_READ_PASSTHRU

 Allow the MMIO handler to be called for any size instead of only 1/2/4

 The MMIO handler for the BusLogic device fits perfectly

 Hard disk technology

 We have our leak !

 And can defeat ASLR

© 2023 REverse Tactics. All Rights Reserved.

31

Step 2: Finding the needles

 Hypervisors have a HUGE code base, you can’t audit everything

 Very time consuming to fully understand an attack surface from top to
bottom

 We don’t have this time ! How to chose where to look ?

 Use knowledge acquired during SOTA to find “interesting” code

 Vulnerability patterns

 Attack surfaces with a lot of past bugs

 Use tools !

 grep

 Find a list of things to look at deeper

 Low quality code

 Attack surfaces not identified during SOTA

© 2023 REverse Tactics. All Rights Reserved.

32

Step 2: Finding the needles

 But was not a great success on VirtualBox code base

 Too much false positives

 Vulnerabilities only accessible in the weirdest configurations

 Non exploitable / reachable bugs

 Code that felt weird but was fine

 Spent too much time on those

 But allowed me to explore a lot of different code

 Acquired knowledge on the code base

 Found interesting attack surfaces to look at from top to bottom !

© 2023 REverse Tactics. All Rights Reserved.

33

Step 3: Targeted research

 Decided to chose the VirtIO devices implementation

 Specification for a paravirtualization interface for multiple devices

 Implemented in a lot of hypervisors

 VirtualBox implements the VirtIO Disk and Network card

 VirtualBox’s implementation can be compared to others

 And the code felt a bit weird…

© 2023 REverse Tactics. All Rights Reserved.

34

Step 3: Targeted research

© 2023 REverse Tactics. All Rights Reserved.

35

VirtIO queues

 VirtIO Queues is a mechanism to send and receive data to and from the guest

 Implemented in the core of VirtIO

 used by all VirtIO devices

 Problematic: want to send a lot of data between guest and host

 Cannot use a single contiguous buffer of physical memory

 A very common way to do this is to use a queue of segment descriptors

 A segment represents a chunk of contiguous physical memory to use

 Each segment is described by

 A Guest Physical Address

 A size

© 2023 REverse Tactics. All Rights Reserved.

36

VirtIO queue descriptors

 Additional flags

 VIRTQ_DESC_F_NEXT

 The descriptor chain is not over

Get the next descriptor at index NIDX

 VIRTQ_DESC_F_WRITE

 The buffer must be used only for writing

© 2023 REverse Tactics. All Rights Reserved.

37

VirtIO queue descriptors chain

© 2023 REverse Tactics. All Rights Reserved.

38

VirtIO – VBox implementation

 Function virtioCoreR3VirtqAvailBufGet

 Responsible for parsing a descriptor chain

 Place it in the VIRTQBUF passed in parameter

 Contains a list of segments

© 2023 REverse Tactics. All Rights Reserved.

39

VirtIO – VBox implementation

© 2023 REverse Tactics. All Rights Reserved.

40

VirtIO – VBox implementation

© 2023 REverse Tactics. All Rights Reserved.

41

VirtIO – VBox implementation

© 2023 REverse Tactics. All Rights Reserved.

42

VirtIO – VBox implementation

© 2023 REverse Tactics. All Rights Reserved.

43

VirtIO – VBox implementation

© 2023 REverse Tactics. All Rights Reserved.

44

VirtIO – VBox implementation

 Only error stop condition

© 2023 REverse Tactics. All Rights Reserved.

45

CVE-2024-21114 – Root cause

 uQueueSize is NOT fixed !

 Default is 1024…

 But can be changed by writing into the MMIO

 To any value on 16 bits

 Maximum 0xFFFF

© 2023 REverse Tactics. All Rights Reserved.

46

CVE-2024-21114 – Root cause

© 2023 REverse Tactics. All Rights Reserved.

47

CVE-2024-21114 – Root cause

 The host fails to properly check if there are too many descriptors in

the list

 Can write up to 0xFFFF segments in a list of size 1024

 OOB write after the VIRTQBUF structure passed in parameter

© 2023 REverse Tactics. All Rights Reserved.

48

Plan

02

Vulnerability

research

03

Exploit

Development

01

Definitions

© 2023 REverse Tactics. All Rights Reserved.

49

CVE-2024-21114 – Impact

 The VIRTQBUF structure can be located on the stack or in the heap

 VirtIO disk allocate it on the heap

 VirtIO network card place it on the stack

 Decide to go with the stack buffer overflow exploit

 Vulnerability allows to write chunks of 0x10 bytes in OOB

 But only 0xC are controlled, 4 last bytes are 0

© 2023 REverse Tactics. All Rights Reserved.

50

CVE-2024-21114 – Exploit

 Can be triggered from the function virtioNetR3TransmitPkts

 In VirtIO network card implementation

 ASLR is defeated thanks to the exploited leak

 CVE-2024-21121

 VirtualBox compiled without stack canaries

 Easy win ?

© 2023 REverse Tactics. All Rights Reserved.

51

CVE-2024-21114 – Exploit

 Stack frame of

virtioNetR3TransmitPkts

© 2023 REverse Tactics. All Rights Reserved.

52

CVE-2024-21114 – Exploit

 Can not fully control

RIP

 Nothing interesting

to control before RIP

 Stack frame of

virtioNetR3TransmitPkts

© 2023 REverse Tactics. All Rights Reserved.

53

CVE-2024-21114 – Exploit

 But two objects interesting to control
after RIP

 pDevIns and pThisCC

 Arguments to the function

 Can both be used to have an
arbitrary call

 Before the function returns

 Within the limits of CFG

 But function can’t return

 RIP has been overwritten

© 2023 REverse Tactics. All Rights Reserved.

54

Exploit – Capabilities
 Stack buffer overflow to 2 arbitrary calls

 CFG: Can only call existing functions

 Must never return

 Strategy

 Use the first “arbitrary” call to trigger an arbitrary write

 Use the second “arbitrary” call to call Sleep forever

 Function will never return

 Will not crash !

 From stack buffer overflow to arbitrary write

 Can use it only one time

 Thread is sleeping forever

© 2023 REverse Tactics. All Rights Reserved.

55

Exploit – Capabilities

 Single arbitrary write

 ASLR is defeated thanks to the exploited leak

 Can place arbitrary data at known location

 Know the address of ROP gadgets

 Know where the stack of the XHCI command thread is

© 2023 REverse Tactics. All Rights Reserved.

56

Exploit

 Thread is waiting here

 Semaphore

 Woke up when a

command is sent by

the guest

© 2023 REverse Tactics. All Rights Reserved.

57

Exploit

 Use arbitrary write to overwrite the XHCI thread’s stack

 Target the stack frame of the function waiting on the semaphore

 Overwrite the saved RIP

 Trigger the wake up of the XHCI thread by sending a command

 Thread jumps to arbitrary location

 Bypass CFG

 Only controls dynamic calls

 Not the saved RIP on the stack

 ROP to shellcode !

 WIN !

© 2023 REverse Tactics. All Rights Reserved.

58

Demo

© 2023 REverse Tactics. All Rights Reserved.

59

Plan

02

Vulnerability

research

03

Exploit

Development

04

Conclusion

01

Definitions

© 2023 REverse Tactics. All Rights Reserved.

60

Pwn2Own Vancouver 2024

 Exploit fully written in Python

 100% stable

 Chained with a Windows privilege escalation for Pwn2Own

 Had a full win !

 Lucky: picked first in the random draw

 No bug collisions

© 2023 REverse Tactics. All Rights Reserved.

61

Conclusion

 Fast and fun project

 Lasted a month in total

 Learned a lot on virtualization

 Improved my tooling

 VirtualBox is a great software to learn about VM escapes

 Open source and easy to read code

 There is still some bugs to found

 Can win a nice bounty at Pwn2Own !

© 2023 REverse Tactics. All Rights Reserved.

62

THANK YOU!

contact@reversetactics.com

https://www.linkedin.com/company/reverse-tactics/
https://twitter.com/Reverse_Tactics
https://www.reversetactics.com/
https://www.reversetactics.com/

